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An algorithm for the solution of the three-dimensional resistive magnetohydrodynamic 
equations in toroidal geometry is presented. The algorithm employs the pseudospectral 
method for approximation in the two periodic coordinates, and finite differences in the radial 
direction. Efftcient Fast Fourier Transforms are used to communicate between configuration 
and Fourier space. Leapfrog time advancement is used for advective terms. Diffusion terms 
are treated implicitly to avoid severe time step restrictions. Sample cases are presented, and a 
comparison of the method with standard finite difference techniques is presented and 
discussed. 

1. INTRODUCTION 

It is now well established that multidimensional nonlinear resistive magneto- 
hydrodynamics (MHD) is an excellent model for the description of the macroscopic 
dynamics of present magnetic fusion experiments. Two-dimensional simulation of 
these processes has become commonplace [l-3]. Such calculations have provided 
valuable insights into the interpretation of experimental diagnostics [4] and the 
nonlinear behavior of unstable modes in various devices [ 1, 5-71. 

It has recently been recognized that two-dimensional motions, while enlightening, 
do not represent the true state of plasma dynamics, and that fully three-dimensional 
calculations are required [8,9]. For tokamak plasmas, where one component of the 
magnetic field is everywhere large, it is possible to derive a reduced set of equations 
that adequately describes the dynamics of these devices [ 10 ]. Three-dimensional 
simulations of these equations have provided a detailed picture of plasma evolution 
18, 9, 1 1 ]. These calculations can proceed much faster than solutions of the original 
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equations. In other magnetic fusion devices, such as the spheromak and the reversed 
field pinch, no such generally applicable set of reduced equations exists at present, 
and one must solve the primitive equations. Incompressibility may provide some 
computational relief [ 121 but this assumption can only be justified a posteriori. 

The periodic nature of the poloidal and toroidal directions in many fusion devices 
allows solutions to be represented by Fourier series in these coordinates. Simulations 
of tokamak plasmas with reduced equations have found that only a handful of these 
modes are important to the dynamics [ 131. Codes developed for the solution of such 
problems have made use of this fact by introducing a mode selection process whereby 
only a few modes are retained in the calculation [ 14 ]. This procedure has also been 
used in incompressible simulations of the primitive equations [ 121. The convolution 
sums that arise from the Fourier representation of quadratic nonlinearities in 
configuration space are then computed directly. 

In fusion devices such as the reversed field pinch of the spheromak no a priori 
mode selection is possible. Indeed, there is reason to believe that many large-scale 
modes will be equally important [7]. Thus a large number of mode interactions are 
probable. These large-scale motions may serve to drive small-scale MHD turbulence, 
which may be responsible for such important physical effects as dynamo action and 
profile maintenance. Also, the particular path taken in the cascade of energy from 
long to short wavelength (along with the possibility of inverse cascades from short to 
long wavelength) is unknown and may be important. A large number (> 100) of 
modes must therefore be retained in such calculations. 

The physical and computational problems described above are similar to those 
encountered in the simulation of turbulent hydrodynamic flows. Accurate and 
efficient methods have been developed for the solution of these problems [ 15-201. 
These spectral methods are based on the use of the Fast Fourier Transform (FFT), 
which allows the convolution sums to be evaluated in O(N In, N) operations, as 
opposed to O(N2) operations for direct summation ] 15 ]. This allows many modes to 
be used in the simulation. 

In this paper we describe an algorithm for the numerical solution of the primitive 
resistive MHD equations by these spectral methods, and present some examples of 
the application of the code based on this algorithm to the dynamics of magnetic 
fusion experiments. In Section 2 we present the mathematical model, and the coor- 
dinate system in which the model is applied. In Section 3 we discuss techniques of 
spatial approximation, including some details of the spectral and pseudospectral 
representations. The discussions here are by no means complete or rigorous, and are 
included to make the presentation self-contained. These methods have been described 
in great detail elsewhere [20]. In Section 4 we discuss methods of time advancement, 
including splitting of the spatial operators and time step restrictions. Section 5 
contains examples of several types of computations that have been performed, 
including a comparison of our algorithm with standard finite differences. 
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2. MATHEMATICAL MODEL 

2.1. Basic Equations 

The study of large-scale dynamics in fusion and astrophysical plasmas involves the 
description of motions that occur on long time scales. In these cases the plasma acts 
as an electrically conducting fluid whose motions are adequately described by the 
single-fluid resistive magnetohydrodynamic (MHD) equations (see, for example, 
Ref. [21] for assumptions necessary for the validity of the model). In a suitable 
nondimensional form, they are 

l3B 
-=-vVB+BVv-BV.V+~,V~B-VV~,X(VXB), 
at (la> 

f3V 
-=-v.Vv+iB. V&-1 
at P 2P 
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8P -=-v.vp-ypV*v+2(y- 
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(lb) 
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where B is the magnetic field measured in units of a characteristic field B,, v is the 
velocity measured in units of the Alfven velocity v, = B,/\/47rp,, p is the mass 
density measured in units of a characteristic density p,,, p is the thermodynamic 
pressure measured in units of pO = BfJ87r, y is the ratio of specific heats, and all 
lengths are measured in units of a characteristic length a. The coefficient 71~ is a 
nondimensional resistivity that may be a function of the dependent variables. When 
the resistivity is constant in space and time, vO is the inverse of the Lundquist number 
s = t,lt,, where t, = 4na2/c2rl is the resistive diffusion time and t, = a/u, is the 
Alfven transit time. Note that S is defined in terms of the normalization constants, 
and is not to be confused with the magnetic Reynolds number R,, which is defined 
in terms of local quantities. The last term in Eq. (Id) represents energy losses not 
directly encompassed by the model, and is included to control the effects of Joule 
heating on plasma beta (j? s 87~pplB~). 

When y10 vanishes, Eq. (la)-( Id) define the ideal MHD model. A finite value of n,, 
relaxes the flux topology constraints of these equations with the result that previously 
unallowed motions are possible [ 221. These new dynamical processes are essential for 
an adequate description of fusion and astrophysical plasmas. The inclusion of further 
dissipative processes, such as ion viscosity of thermal conduction, removes no further 
constraints on the magnetic topology. In extremely hot or strongly magnetized 
plasmas these transport coefficients become highly anisotropic, with values parallel to 
the local magnetic field lines far exceeding those in the perpendicular directions. In 
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these cases (when the parallel mean free path becomes comparable to macroscopic 
scale lengths) it is not clear that first-order transport theory is an adequate 
description of parallel transport. We thus exclude these effects from the model. 

We note that the compressible nature of Eqs. (la)-(ld) admits the propagation of 
Alfven (fast magnetosonic) waves perpendicular to the field. These waves evolve on a 
time scale defined by a cross-field scale length divided by the Alfvtn velocity. For a 
diffuse pinch this length scale is the minor radius. Since many phenomena of interest 
occur on much longer times scales, this presents a computational problem. In some 
fusion experiments (such as the tokamak) one component of the magnetic field is 
everywhere large. This allows a self-consistent ordering in which the plasma becomes 
incompressible, and the magnetosonic wave is eliminated [ 101. The remaining high- 
frequency normal mode is the shear Alfven wave propagating parallel to the field. 
This wave evolves on a time scale defined by a parallel scale length divided by the 
Alfvin velocity. In fusion experiments in which the incompressible ordering is valid, 
this scale length is the major radius. Thus in these cases the fast time scale is 
increased by a factor that is of the order of the aspect ratio, thereby greatly reducing 
the computational requirements. However, in general such orderings are not possible, 
and there is no a priori justification for eliminating compressibility from the model. 
Indeed, for highly sheared. low-q devices such as the reversed field pinch a shear 
Aifven wave travelling near the field reversal surface evolves on a time scale that is 
on the order of the minor radius divided by the Alfven velocity, i.e., the same order as 
that of the compressible wave. Such effects may be minimized in incompressible 
calculations by choosing a relatively coarse poloidal mesh [ 121, but such real physics 
effects as Ohmic heating, adiabatic compression, and density fluctuations are then 
missed. Thus to make the maximum contact with experimental fusion plasmas in a 
wide variety of configurations we retain compressibility in our model. 

2.2. COORDINATE SYSTEM 

We choose to express Eqs. (la)-( Id) in the (r, 0, LJ coordinate system shown in 
Fig. 1, where 0 < Y ,< a, 0 < 19 < 271, 0 < [ < 2n. This system describes a circular cross 
section of radius a rotated through 2n radians about an axis (the major axis) a 
distance R, from the center of the circle. The path traced by the center of the circle 
during a rotation through the angle < is called the minor axis. The coordinate system 
is related to cylindrical coordinates (R, 9, Z) referred to the major axis by 

R = R, + r cos 0, Pa) 

Z = r sin 0, (2b) 

Q = -L (2c) 

and is suitable for the description of confined toroidal plasma systems with circular 
cross section. 

The vector differential operators appearing on the righ-hand side of Eqs. (la)-(ld) 
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FIG. 1. Coordinate system. 

can be expressed in this coordinate system by using the curvilinear coordinate scale 
factors 

h,= 1, 

h,=r, 

h, s rp ’ = (1 + au cos B)/E, 

(34 

(3b) 

(3c) 

where E = a/R, is the inverse aspect ratio of the torus. When a = 1 the coordinate 
system is as described above. Setting a = 0 allows reduction to cylindrical coor- 
dinates (Y, 8, z = C/E) referred to the minor axis. 

After some algebra, the resistive MHD equations then become 

- a?B,.(u, cos 0 - u, sin 0) 

Br 2 dB, 
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Note that, for reasons to be discussed in Section 4, we have assumed v. = qO(r). 
Equations (4a)-(4h) comprise eight equations in the eight primitive variables (B,, 
B,, B,, vI, vg, us, p, p), and are the equations that we solve numerically. (In practice, 
only two of Eqs. (4a)-(4c) are advanced in time; the remaining component of B is 
determined from the condition V . B = 0, thus assuring that the fields remain 
solenoidal.) 

3. SPATIAL APPROXIMATION 

In the numerical solution of Eqs. (4a)-(4h) the state variable U = 
(B,, B,, B,, vr, v,, us, p, p) is represented on mesh of N, x N, x N, grid points (ri, 
i = 1, N, ; 0,, j = 1, N, ; &, k = 1, N,). The spacing in the poloidal (0) and toroidal 
([) directions is uniform such that de = 27r/N,, A[ = 27c/N,. We allow for 
nonuniform mesh spacing in the radial coordinate, but in practice a uniform spacing 
Ar = a/(N, - 1) is used, for reasons to be discussed later. 

The periodic nature of the solution vector U with respect to the 8 and [ coordinates 
allows a spectral representation to be employed for the finite approximation of spatial 
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operators in these directions, since this representation is uniformly convergent at the 
boundaries 0 and 27~. The radial coordinate is treated by the method of finite 
differences. These methods are discussed in more detail in the following sections. 

3.1. Spectral Representation for the Periodic Coordinates 

It is possible to represent any function on the interval (0 < 19 < 271, 0 < [ < 271) by 
the complex Fourier series, 

u(e, <, t) = 5 T 
m=-m ., 

a,,,(t) ei(ms+nb), (5) 

where the complex Fourier coefficients are given by 

a,,,(t) =J02’ $-J02” $ ~(0, c, t) epi(me+no. (6) 

The reality of ~(0, c) requires that 

a m.n = a*m,pn, (7) 

where ( )* represents complex conjugation. 
When the function ~(0, <) is approximated by M x N data points e.g., stored on a 

mesh), it can be represented by the finite Fourier series 

MI2 N/2 

u,,(O,, Ck, t) = x 1 a,,,(t) ei(m’i+fl~k), 
I!=-M/2+ 1 n= -N/2+ 1 

(8) 

with 

Here u,,(B,, &, t) is the MN-term approximation to the function u(B, [, t) evaluated 
at the mesh point (6,, &) at time t; dj = (j- 1) 27clM and ck = (k - 1) 2x/N. The 
derivatives au/@ and ~%/a[ at the point (ei, L$) and time t are given by 

MI2 A'/2 

- = \' T 

m=--M/2+1 n=-%2+1 

ima,,,(t)ei(msi+"~k', 

ina,,, ei(mOJ+ ‘lc). 

(loa) 

(lob) 

The spectral representation of the equations of motion is obtained by employing 
Eqs. (8) and (10) in some appropriate manner (to be discussed in Section 3.2) in the 
right-hand side of the Eq. (4a)--(4h). This technique has several distinct advantages 
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over finite difference methods. These properties are well documented [20], and are 
discussed here only briefly. 

3.1.1. Phase Error 

To illustrate the phase error in finite difference representations, consider the model 
differential equation 

a24 au 
-=w at 0 < x < 2n, u(0, t) = u(2?r, t). 

Using the one-dimensional analogue of Eq. (5), we obtain a set of differential 
equations for the Fourier coefficients 

da 
n = icna,, 
dt 

-GQ<n<co. 

Now represent Eq. (11) on a set of N mesh points xj, where xj = (j - 1) 27r/N. If 
we employ the second-order finite difference approximation to the spatial derivative 

au uj+I-Uj-I 

ii -  ax i 2Ax ’ 
j = 2, 3 ,..., N - 1, 

and make use of the one-dimensional analogue of Eq. (B), we find that in this 
representation the Fourier coefficients evolve according to the N equations 

Thus Eq. (13) accurately approximates the solution of Eq. (11) only for long- 
wavelength (I n 1 < N/2) modes. This representation is dispersive, with different 
wavelengths propagating at different velocities. Phase error of this type is inherent in 
all finite difference approximations to Eq. (11). 

Now consider Eq. (lo), the spectral representation of the derivative. When this and 
Eq. (8) are employed, Eq. (11) becomes the set of N equations 

da 
2 = icna,, 
dt 

which is identical with the exact Eq. (12) except for the finite number of modes. Thus 
all modes retained in the representation (8) satisfy the exact dispersion relation. The 
only error is due to the retention of a finite number of terms in the Fourier series. 
This truncation error is discussed in the next section. 
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3.1.2. Convergence: Order of Accuracy 

In the previous section we showed that the spectral representation (8) and (10) 
leads to a faithful reproduction of the phase properties of all modes retained. Here we 
consider the error after N terms in approximating the solution of Eq. (11). 

For any I > 0, we consider the error [20] 

EN(t) = up, t) - U,&(X, t). (16) 

For large N, we have /Ed] - la,,,/. Integrating the one-dimensional analogue of Eq. (6) 
by parts p times, assuming that U(X) has continuous derivatives up to order p - I, 
and that U(~)(X) is integrable, it can be shown that 

Ia,1 < I/Np, N-, 03. (17) 

In particular, if u(x) is infinitely differentiable and periodic on 0 <x < 27r, then the 
error E,,, goes to zero faster than any power of l/N as N + co. This is to be contrasted 
with pth-order-accurate finite difference methods wherein the error vanishes like l/ND. 
(Equivalent accuracy is obtained in spectral methods for functions that are p - 1 
times differentiable.) Thus spectral methods require relatively fewer modes (mesh 
points) to obtain the same accuracy as a given finite difference method. 

As with finite differences, the analysis in this and the previous section strictly holds 
only for linear equations. However, there is a great body of evidence that indicates 
that these properties continue to hold when nonlinearities are considered 1201. 
Spectral methods are, however, subject to aliasing errors. These are discussed in 
Section 3.2.1. 

3.1.3. Computation Time 

The evaluation of the finite difference approximation to the first derivative, 
Eq. (13), for all mesh points xj requires O(N) operations. The direct evaluation of the 
spectral series, Eq. (lo), for all mesh points xj requires -O(N’) operations. Similar 
scalings hold for the direct evaluation of quadratic nonlinearities and convolution 
sums. However, when Fast Fourier Transforms (FFTs) are used [23], the evaluation 
of finite Fourier series and convolution sums can be reduced to -O(N In, N) 
operations [ 151. Such methods are called pseudospectral, and are discussed in the 
next section. They require computer time comparable with finite difference methods 
of the same resolution. In practice they are somewhat slower. However, because of 
the exponential convergence properties discussed in Section 3.1.2, they require less 
computer time than finite difference methods of the same accuracy. Examples of this 
are shown in Section 5.4. 

3.2. The Pseudo-Spectral Method 

Consider the equation 
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u(0, t) = u(2n, t), (18b) 

f(O, t) = f(27L 4, (18~) 

which contains the essential features of the resistive MHD Eqs. (4a)-(4h). The first 
term on the right-hand side represents the quadratic nonlinearity introduced by the 
convective derivative, the second term models the effects of dissipation, and the third 
term represents sources, sinks, lower-order linear terms, forcing functions, etc. Here 
we will consider only the approximations to the first and third terms. The dissipation 
term is discussed in Section 4.3. 

Substituting (8) and (10) into (18), taking the inner product with exp(-ipx), and 
ignoring the dissipative term, we arrive at a set of evolutionary equations for the N 
Fourier coefficients a,, : 

N/2 da,- . \‘ dt ----I - 
n=-N/Z+1 

(194 

a -p = a:. (19b) 

The set (19) is the spectral representation of Eq. (18). As mentioned in Section 3.1.3, 
the direct evaluation of Eq. (19) for all ap requires O(N*) operations, as compared to 
O(N) operations for finite differences. Additionally, while completely accurate, 
Eq. (19) suffers from the defect that it can be quite complicated (especially when 
applied to the full resistive MHD equations), and that it does not have the familiar 
form of the configuration space Eq. (18). We are thus led to the pseudospectral 
method, in which both the form of the original equation and the desirable properties 
of the spectral representation are retained. 

The pseudospectral approximation takes advantage of the fact that multiplication is 
most efficiently performed in configuration space and differentiation is most 
accurately performed in Fourier space. Fast Fourier Transforms are used to 
communicate between the two representations. In principle it is irrelevant whether the 
dependent variables are the N Fourier coefficients, as in Eq. (19), or the values of 
U(Xj) stored at the N mesh points xj in configuration space. In the first case the 
transformation is made to configuration space to perform the convolution; in the 
second case the transformation is made to Fourier space to perform the differen- 
tiation. Both methods have the same accuracy, i.e., those of the fully spectral methods 
described previously. Because of its familiarity, we have chosen the configuration 
space representation. 

The configuration space pseudospectral approximation to Eq. (18) at mesh point xi 
is 

j = 1, 2,. . ., N, 

where (&,/c?x), is evaluated as in Eq. (10). The function uN(xj) is stored on the mesh 
xj in configuration (physical) space. The array (L?u,~/~x)~ is generated by 
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transforming to Fourier space [Eq. (9)] to obtain the a,, and then transforming the 
array ina, back to configuration space [Eq. (lo)]. The quadratic nonlinearity is then 
evaluated as a multiplication of the arrays u,(xj) and (&,/ax), at each xj. 

When FFTs are used, evaluation of Eq. (20) at all mesh points requires O(N In, N) 
operations. Thus, as mentioned in Section 3.1.4, the pseudospectral method is 
comparable in speed to finite difference with the same spatial resolution. 

It is to be emphasized that a by-product of pseudospectral method is the simplicity 
of the resulting equations. Both the function and its derivative appear as arrays, the 
latter being readily evaluated by a single subroutine call. The coding closely 
resembles the equation being solved, making debugging a relatively easy task 
resulting in reduced code development time. 

3.2.1. Aliasing Errors 

We have shown in Section 3.1 that spectral methods can lead to a physically 
realistic and rapidly convergent approximation to a linear equation. When 
nonlinearities are present, as in Eq. (18a), these methods are subject to aliasing errors 
[ 15, 17, 18, 201 that arise from the generation by quadratic nonlinearities of modes 
with wavelength shorter than TC/AX. These errors, and an algorithm for preventing 
them, are discussed below. 

Consider two variables uj and vi, defined on a set of N mesh points x,~ = 27cjlN, 
and their Fourier coefftcients uk, b,. Then 

and 

The product wj = ujvj has the Fourier expansion 

h/2 

wj = 2 c,ei2njllN, 

/= -N/2+ 1 

@lb) 

(224 

(22b) 
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with the cl’s are related to ukr b, by 

491 

(23) 

Note that the range of the index k’ = I - k in Eq. (23) is -N + 1 < k’ < N - 1, which 
is outside the range employed in Eqs. (2la)-(21b). Thus the c,‘s will contain infor- 
mation from modes that are not resolved in the original representation. We now 
discuss the nature of this error. 

Even though Eqs. (22a)-(22b) define coefficients of the finite Fourier series 
(2la)-(21b) only for -N/2 + 1 < k < N/2, they remain valid function definitions for 
values of k outside this range. In fact, evaluating Eq. (22b) for 
k’ 3 I - k = N - k, > N/2 we find that the coefficient b,-, in Eq. (23) (that is not 
defined in the original representation) has the same value as b,Pk-N (that is a proper 
Fourier coefficient). Similarly, when 1 -k < -(N/2) + 1, blPk appears as b,_,+,.. 
This phenomenon of one mode appearing as another is called aliasing error. We have 
found that such errors can lead to nonlinear instabilities after many time steps. 

Aliasing errors can be prevented in pseudospectral methods by removing the 
offending modes from the problem. This is accomplished by allowing the summations 
in Eqs. (21) and (23) to range over -M< 1 GM, -M< k < M such that 
I- k -N < -M and I- k + N > M. Modes outside this range are set to zero, since it 
is these terms that contain the aliasing errors. Applying these conditions we find 

A4 < N/3. t.24) 

Since k max = N/2, aliasing errors are prevented by using two-thirds of available 
Fourier space. 

3.3. Representation of the Radial Coordinate 

Since the solutions of Eqs. (4a)-(4h) are not periodic in the radial coordinate r, the 
techniques discussed in Sections 3.2 and 3.3 are not directly applicable. Similar 
problems are encountered in viscous hydrodynamic problems in nonperiodic 
domains, such as flow in pipes or rectangular channels. In these cases approximation 
in the nonperiodic coordinate is accomplished by expansion in Chebyshev 
polynomials [20], which have the desirable property that their zeros (collocation 
points) are densely spaced near the outer boundary giving a naturally concentrated 
mesh there. This is important since hydrodynamic boundary layers form in this 
region. In resistive MHD, the important boundary layers are associated with filamen- 
tation of current, occur internally, and may form spontaneously at non-predetermined 
locations. Thus a uniform mesh, or one that is internally dense, is desirable. 
Expansion in Bessel functions, the natural functions for analytic investigation, is 
flawed by nonuniform convergence at the outer boundary and lack of a fast transform 
algorithm [20]. Thus, in spite of the deficiencies discussed in Section 3.1, we choose 
finite differences as the most efficient representation of the radial coordinate. 
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We define the following approximation to the first and second radial derivatives 
appearing in Eqs. (4a) - (4h): 

au ui+, -ui-, 
uar=ui A+ri tApri ’ 

~~(,~~=~~it1/2~i+l/2-~i-l/2~i~l/Z~ 

ri(A + ri + A _ ri) 

(254 

(25b) 

2 =ri(A+ri+A-ri) 

where A+ri=ritl-ri, A-ri=ri-ri-,, and ri*,,2=(ri*l+ri)/2. While we have 
allowed for a nonuniform radial mesh, in practice a uniform mesh employed, as 
discussed above. On this mesh, Eqs. (25a)-(25c) attain second-order accuracy. 

Note that we use the centered difference formula, Eq. (25a), rather than donor cell, 
or upstrem-downstream, methods. When the latter methods are applied to toroidal 
locations differing in phase by z/n radians [so that for the nth mode u,(r, l?, [) = 
-uJr, 8, [ + n/n)] the implied relationship &Jr, 8, C)/ar = -8un(rr 6, i + x/n)/& is 
not retained, due to the change in sign of u,. We have found this to cause anomalous 
rotation of the plasma column. 

3.4. Radial Smoothing 

In Section 3.1.1 we discussed the inherent inaccuracies in the representation of 
short-wavelength modes with finite difference methods. These phase errors, coupled 
with the natural tendency of the quadratic nonlinearities to propagate information to 
short wavelengths, can lead to an accumulation of short-wavelength noise that, while 
not necessarily unstable, may eventually dominate the solution. 

In our algorithm, this noise appears only in the radial direction. We remove it by 
applying a spatial filter that damps the short-wavelength modes while leaving the 
longer wavelengths relatively unchanged. After the solution has been advanced a 
complete time step by the methods discussed in Section 4, it is modified at each point 
by 

U;:’ = zl& + a@,*, 1,j.k - 2U&,k + ui*_l,j,k), (26) 

where u* is the latest approximation to zP+‘, obtained by time advancement, and 
0 < a < $. When a = a, the amplitude of the k, = n/Ar mode is reduced to zero, while 
that of the k = z/5Ar (,I = 10Ar) mode is reduced by less than 10%. In practice we 
use either a = f or a = a. 

The smoothing algorithm (26) is equivalent to adding a term of the form oa2u/8r2 
to the equations, where u = aAr2/At. The scheme is this stable for a < f, as is always 
the case. 
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3.5. Boundary Conditions 

To obtain a solution, Eqs. (la)-(ld) must be supplemented by boundary 
conditions. Periodicity is automatically obtained in the 19 and [ coordinates. We 
assume that the surrounding circular cross-section wall is nonporous, and is a good 
electrical conductor. Thus 

fi*v=o, (2% 
ii.B=O, W’b) 

at r = a, where ti is a unit vector normal to the wall. Evolutionary equations for the 
tangential components of v at the wall are found by employing (27ak(27b) in 
Eq. (1 b). The result is 

av* -zzv 
at t * v,v + n^n” - (v, * Vtv) - + v,p 

- f (B x n^) J . n^, (28) 

where vI = (n^ X v) X n^ is the tangential component of v, and operator V, is defined 
through the relationship 

v=iin”*v+v,. 

When the wall is perfect electrical conductor, we have the condition 

(29) 

iixJ=O, (30) 

which may be used to derive boundary conditions on the normal derivatives of B,. 
However, we have found it superior to use Eq. (30) and (27a)--(27b) in Eq. (la) to 
derive evolutionary equations similar to (28) for the tangential components of B. In 
many applications, magnetic flux may enter or leave through the wall (e.g., from an 
external electrical circuit). In this case the wall does not appear as a perfect 
conductor to the mean fields, and separate conditions on these Fourier components 
are employed. 

It remains to specify boundary conditions on the thermodynamic quantities p and 
p. An evolutionary equation for the density is obtained by employing (27a) in (Ic), 
while evaluating the normal component of (lb) at the wall yields 

tieVp=-fi.(p~.Vv-~~~) (31) 

as a condition on the normal derivative of the pressure. 
In addition to the physical boundary at the wall enumerated above, conditions 

must be imposed at the origin r = 0. These may be derived by requiring the solution 
to be analytic independent of numerical approximation. Similar ideas have been 
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discussed in detail elsewhere [3]. Scalar quantities (Br, Vs, p, p) can have only finite 
m = 0 Fourier amplitudes, and vector components (B,, B,, v,, o,) can have only 
finite m = 1 Fourier amplitudes at the origin that are related by B, = iB,, v, = iv,. 
The Taylor series expansion of these quantities about the origin consists of only even 
powers of r. The m = 1 components of scalar quantities and the m = 0 components of 
vector quantities have a power series about the origin that consists of only odd 
powers of r. (This can be shown by induction since the gradient of a scalar can have 
only a finite m = 1 component and likewise the divergence of a vector can have only 
a finite m = 0 component at the origin. Repeated application of these operations leads 
to the above result.) Using these facts, we can derive evolutionary equations for the 
Fourier coefficients to be advanced at the origin by taking the limit of (4a)-(4h) as 
r-+0. We find 

(32b) 

(32c) 

(324 
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where U;, denotes the mth complex Fourier coefftcient of the variable U. 
In Eqs. (32a)-(32e) the first derivative with respect to radius of the m = 0 

components of vectors and the m = 1 components of scalars at I = 0 is evaluated by 
simply finding the amplitude of these quantities at the first radial mesh point and 
dividing by Ar. Likewise, the second derivative with respect to radius of the m = 1 
components of vectors and the m = 0 components of scalars at r = 0 is evaluated by 
subtracting the values of these quantities at the first mesh point from those at the 
origin and multiplying by 2/A?. 

4. TEMPORAL APPROXIMATION 

4.1. Splitting of Spatial Operators 

We can write Eqs. (4a)-(4h) symbolically as 

CXJ 
-= D, . U + D, . U, 
at (33) 

where U = (B, V, p, p) is the solution vector, and the operators D I and D, represent 
the first- and second-order derivatives, respectively. Examination of equations 
(4a)-(4h) shows that the first-order operator D, can be written as 

D,=R+O+Z, (34) 

where R, 0, and Z contain only radial, poloidal, and toroidal spatial derivatives, 
respectively. We make use of this splitting in the time-advancement algorithm, 
discussed below. 

4.2. Adjective Terms: Leapfrog 

The form of Eq. (34) suggests the successive application of the formulas 

u(1) -U”-1 

At 
= R,, . U”, (354 

u’2’ _ u(1) 

At 
= cl,, * U”, 

Q-U(2) z .u” 
At = PS 5 (35c) 
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where At = t”-’ - tnP’, U”-’ = U(t”-I), U” = U(Y), and U”‘, UC*), and U are 
successive approximations to U” + ’ = U(tn+i). The subscripts FD and PS refer to the 
finite difference and pseudospectral approximations to the differential operators, as 
discussed in Section 2. 

The representation (35) allows each spatial coordinate to be treated individually. 
This effectively separates the finite difference and pseudospectral operators. It results 
in reduced storage requirements, and allows each dimension to individually take 
advantage of machine hardware features, in particular vectorization. 

Since the time integrations are performed explicitly the operations indicated by 
Eqs. (35a)-(3%) commute. Therefore the difficulties that can arise due to the 
requirement that each individual split step be a mathematically well-posed problem in 
the case where each step is calculated implicitly (a nonlinear finite approximation 
requires iteration to convergence) do not occur [24]. 

If one assumes v = vO(r), then the terms in Eqs. (la)-(ld) proportional to Vq can 
also be written in the form (34). Even though they strictly arise from the same term 
as the diffusion operator, they are included in this step of the algorithm because they 
are of lower order and hence have little effect on stability [ 25 1. 

The Ohmic heating term v0J2 cannot be split as above and is advanced separately. 
In addition to the leapfrog algorithm (35a)-(35c), we employ an averaging 

technique that replaces the solution U” by the average of Un+’ and U”-‘. We have 
found that the application of this averaging every 100 time steps is sufficient to avoid 
the decoupling instability that is inherent in the leapfrog scheme. 

4.3. Time Step Restriction 

A straightforward stability analysis of model equations of the form (35), with r 
approximated by finite differences, and 0 and [ by pseudospectral methods, leads to a 
restriction on the time step 

At< 
2 

9 
+ NEa, 

(36) 

where M= NJ2 is the largest poloidal mode number, N = NJ2 is the largest 
toroidal mode number, and a,(a = r, 19, [) is given by 

(37) 

where c,’ = yp/p is the square of the local sound speed and vi = B2/p is the square of 
the local Alfven speed. 

Since M - l/do, Eq. (36) can be quite restrictive near the origin (r = 0), becoming 
formally second order for r - Ar. The source of this problem is that the poloidal 
mesh, while uniform in AO, is nonuniform in arc length As = rAt9. The mesh thus 



PSEUDOSPECTRAL MHD SIMULATION 503 

allows for much shorter wavelengths to be resolved near the origin than near the 
outer boundary. The problem is alleviated by replacing the fixed number M by a 
function M(r) < A4 such that wavelengths shorter than those resolvable near the 
boundary (A, = 2ad0) are removed from the calculation [26]. This smoothing, or 
filtering, of poloidal modes as a function of radius restores Eq. (36) to first order with 
a considerable gain in allowable time step. 

Theoretically, the filtering procedure described above allows only modes with 
poloidal mode number m = 0 to exist near to r = 0. In order to accurately model the 
dynamics, clearly m = 1 must also be allowed. We have found that for many cases 
this is also too restrictive, and accurate results are obtained by allowing m = 2 to 
extend to r = 0. 

4.4. Diffusion Terms: Implicit 

The time step restriction (36) applies only to the advective terms discussed in the 
previous section. When diffusive terms arising from second-order spatial operations 
are considered, the time step restriction is formally second order everywhere. When 
v,, is small enough (the cell Reynolds number R, = vAr/q,, > l), the advective time 
step restriction dominates. However, in cases where qO(r) has large spatial variation 
the diffusive restriction may dominate locally. To circumvent this problem we 
advance the diffusive terms (terms proportional to r],) in Eqs. (4a)-(4h) by the 
implicit algorithm 

where Bifj’ (r) is the (m, 1) complex Fourier coefficient of B(r, t”+ ‘), g,,,(r) is the 
(m, I) complex Fourier coefficient of the advective approximation to B(r, t”“) 
[obtained from Eq. (35c)], Li*, is the spectral-finite difference approximation to the 
Laplacian, and w is a coefficient such that (0 < w < 1). When w > 0.5 the algorithm 
is unconditionally stable, and when w = 0.5 it is second-order accurate in At. The 
three-point operator on the left-hand side of Eq. (38) is easily inverted using the well- 
known tridiagonal algorithm [ 251. 

5. EXAMPLES 

In this section we briefly describe several examples of applications of the 
algorithms presented here. These problems are all relevant to simulation of the 
reversed field pinch (RFP), a diffuse toroidal pinch with toroidal and poloidal 
magnetic field of comparable magnitude. The model presented in this paper is thus 
appropriate, for reasons discussed in Section 2. 
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5.1. Toroidal Equilibrium 

Magnetohydrodynamic equilibrium is defined by the force balance condition 

Vp=JxB, (39) 

which is the steady-state, zero flow limit of Eq. (lb). For a straight cylindrical 
system, solutions of (39) are functions of r only. These solutions are characterized by 
circular concentric surfaces centered at r = 0. 

10-z. 

10-7 , :\T;I:: 

20 40 60 80 100 120 140 16( 
TIME 

1 

20 40 60 80 100 120 140 160 
TIME 

FIG. 2. (a) Kinetic energy versus time for relaxation to toroidal equilibrium. The nonuniform 
behavior is the result of the application of different values of the friction parameter v throughout the 
calculation. (b) Energy in the radial component of the magnetic field versus time for the toroidal 
relaxation shown in (a). 
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When toroidal effects are introduced axisymmetric (c-independent) solutions are 
functions of both r and 8. The accurate numerical solution of these problems has 
been the topic of much research [27]. However, in many instances (such as obtaining 
initial conditions for dynamical simulations) such accurate methods are not required, 
and toroidal equilibria may be obtained by dynamical relaxation. In this method the 
initial conditions consist of a known cylindrical equilibrium. Of course, this solution 
does not represent equilibrium in a torus, and as time proceeds the nondissipative 
dynamical equations cause flows to appear that move the plasma toward a state of 
force balance. Because of the kinetic energy of the flow, the system will overshoot its 
new equilibrium position resulting in oscillations that may continue indefinitely, 
unless damped. This is accomplished by rewriting Eq. (lb) as 

dv 
-= F - vv, 
dt (40) 

where the left-hand side represents the advective derivative, F is the combined 
pressure and Lorentz forces, and v is a friction coefficient chosen to remove the 
kinetic energy from the system. When the kinetic energy becomes less than some 
prescribed value, a toroidal equilibrium has been determined. 

In Figs 2a, b we show the kinetic and radial magnetic energies as a function of 
time for such a calculation. The initial (cylindrical) state is characterized by profile 
of the form 

q(r) = qo( 1 + ur* + br4), (41) 

where q = uBJB, is called the safety factor, q. = q(O), an a and b are constants. For 
the configuration considered, we have E = 0.2, q(0) = 0.1. In general, a pressure 
profile p(r) must also be specified. For this case, and all subsequent examples in this 
paper, we have taken p = 0 initially. Then Eqs. (39) and (41) completely specify the 
cylindrical solution. We see in Fig. 2 that the plasma approaches toroidal 
equilibrium. The nonuniform behavior of the kinetic energy is the result of the 
application of different values of P throughout the calculation. 

The axisymmetric flux surfaces in the initial and final states are shown in 
Figs. 3a, b. These are the level curves of the function ~(r, 0) defined by 

aw 1 -=-- 
& 

B 8) 
Jw rB -=- 

5 ae r r’ 

where r is defined in Eq. (3~). We see that in the resulting toroidal equilibrium, the 
flux surfaces are no longer concentric circles, and that the magnetic axis (the point 
where B, = 0) has shifted slightly outward a distance &/a z 0.05. This shift is small, 
in agreement with theory [28]. 

581/55/3 1 I 
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-1.0 -.8 -.6 -.4 -.2 .O .2 .4 .6 .8 1.0 

FIG. 3. Initial (a) and final (b) flux surfaces for the toroidal relaxation problem. Note the slight 
toroidal shift characteristic of the reversed field pinch. 

5.2. Helically Symmetric Simulations 

Because of the slight nature of the toroidal shift in RFP configurations, it is 
sufficient in many cases to carry out calculations in cylindrical geometry. Then the 
dynamical Eqs. (4a)--(4h) preserve helical symmetry. Thus if initial conditions are 
prescribed by a given helicity h = n/m, where n and m are axial (toroidal) and 
poloidal mode numbers, then all modes (m, n) generated nonlinearly will retain the 
same helicity h. This property of the MHD equations has been exploited previously 
to allow the solution of certain three-dimensional problems with two-dimensional 
codes [ 1, 31, and has yielded valuable insight into plasma dynamics. In our case such 
problems may be reproduced, as the numerical solution described in this paper also 
preserves initial helicity exactly. 

In Figs. 4a-f we show the helical flux surfaces at various times resulting from the 
nonlinear evolution of the m = 1, IZE = 0.3 tearing instability in the force-free Bessel 
function equilibrium 
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B,(r) = J,(r), W-4 

B,(r) = JCIV)~ (43b) 

which is a cylindrically symmetric solution of (39) when p = 0. These flux surfaces 
are level curves of the helical flux function 

IvhP, 0) = jr [b,o,,(r’) + r’h E b,,,,(f)] dr’ a 
- G brm “(r) eime + C.C., 

where h = n/m is the helicity, brm “, born “, and bzm n are the (m, n) complex Fourier 

FIG. 4. Helical flux surfaces at various times for the nonlinear evolution of the m = 1, n& = 0.3 
tearing mode in the Bessel function model equilibrium. 
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coefficients of the magnetic fields, and C.C. denotes complex conjugate. In helical 
symmetry the magnetic field lines are tangent to these contours. Figure 4 is in close 
agreement with previous two-dimensional helical results [3, 51. 

5.3. Mode Interaction 

Fully three-dimensional effects are observed when the initial conditions contain 
more than one helicity. In this cylindrical example, the initial conditions consist of 
the force-free equilibrium (41) with q. = 0.15748, a = -1.8748, b = 0.8323, along 
with the two linearly unstable eigenmodes (m = 1, n = -10) and (m = 1, n = -11). 

0 20 40 60 80 
TIME 

0 20 40 60 80 
TIME 

FIG. 5. Kinetic (a) and radial magnetic (b) energies versus time for a three-dimensional simulation. 
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These modes are obtained from a linear resistive MHD code that employs the method 
of matrix shooting [29]. The (m = 1, n = -10) mode in this equilibrium has been the 
focus of detailed single helicity calculations [7]. 

The case is run on a grid of 65 radial mesh points, 8 poloidal mesh points (modes), 
and 64 axial mesh points (modes). This allows for the higher harmonics (2, -2O), 
(2, -21), and (2, -22) resulting from mode interaction to be well represented in the 
calculation. The accurate computation of all 5 12 modes and their interaction would 
be impractical without the fast transform techniques presented in this paper. 
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FIG. 6. Energy E,,,, in various (m. n) modes for the three-dimensional case of Fig. 5. The initial 
conditions consisted of (0, 0), (1, -lo), and (I, -11) only. Many more modes are present than shown 
here. 
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In Fig. 5 we plot the kinetic and radial magnetic energies 

E, = 1^ pv2 d3r, E,= Bfd3r 
.i 

as functions of time for this case. We see a period of exponential 
nonlinear saturation and relaxation for t > 40t,. In Fig. 6 we 
various (m, n) modes 

(45) 

growth followed by 
plot the energy in 

(46) 

where brm n is the complex Fourier coefficient of B,, as function of time. Note that 
many unstable modes appear in addition to those initialized at t = 0. 

In Fig. 7 we plot the helical flux contours [Eq. (44)] for several (m, n) modes in 
the system at various times. It is seen that this configuration is rich is model activity. 
Note that in three dimensions these contours merely aid in visualization, and have no 
relation to magnetic field lines as they do in the case of single helicity. 

In Fig. 8 we plot the spectral energy, Eq. (46) for m = 0, 1, and 2 as a function of 

FIG. 7. Helical flux contours for several (m, n) modes in the three-dimensional simulation. 
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m=0 m=, m=* 

FIG. 8. Energy I?,,, for m = 0, 1, and 2 as functions of n at various times during the three- 
dimensional simulation. 
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n a various times. The sharp cutoff at large In 1 is due to dealising, as discussed in 
Section 3.2.1. Note the broadening of the spectrum about the initial (1, -10) and 
(1, -11) modes, and the early generation of modes with opposite helicity h = n/m. 
The spectrum is fully developed by the saturation time t = 40 t,. It is difficult if not 
impossible to select preferential modes in this case. Such turbulent states are most 
accurately modeled by the spectral methods presented here. This and similar cases 
will be discussed in more detail in a future publication. 

5.4 Comparison with Finite Differences 

In this section we compare the results of the pseudospectral algorithm with those 
obtained by finite differences. For our algorithm this is a relatively simple matter, as 
all derivative arrays are calculated in subroutines. The choice of finite differences or 
spectral computation is simply controlled by a switch in the routine. 

For a comparison we choose Eq. (45) and its growth rate 

i+65x8x64 
- 65 x 8 x 32 PSEUDOSPECTRAL 
-+65x8x16 

+*65x8x64 

,010 
i-65x8x16 

(47) 

--65x8x64 
-65x8~32 I 

PSEUDOSPECTRAL 

--65x8x64\ 
FINITE DIFFERENCE -- 65 x 8 x 32 f 

.16 
PS64 

.08 

-.16 

m.24 
1 2 3 4 

FIG. 9. (a) Radial magnetic energy versus time for several axial mesh sizes for both 
pseudospectral (PS) and finite difference (FD) calculations. Note that PS64 and PS32 are 
indistinguishable from another. (b) Growth rate of the curves shown in (a). Note the poorer 
convergence properties of finite difference methods. 
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for both finite differences and the pseudospectral algorithm for various values of the 
number of axial mesh points (modes) N,. 

The results are summarized in Figs. 9a, b, where we plot E, and y versus t for both 
methods for various axial meshes. When N, = 64 (the base case) the two methods are 
in substantial agreement. When N, = 32 the results begin to diverge, with the 
pseudospectral results closely following the base. When N, = 16 neither method is 
very accurate, but the pseudospectral method exhibits much more integrity than do 
finite differences. 

For the same number of mesh points (modes), finite differences require somewhat 
less computer time than does the pseudospectral method. However, as discussed in 
Section 3.1.2 and demonstrated in Fig. 9, the pseudospectral method requires fewer 
modes to obtain comparable accuracy. We have found that, for the cases considered, 
the pseudospectral method requires approximately half the computer time of finite 
differences to obtain a given standard of accuracy. 

6. CONCLUSIONS 

We have developed an algorithm for the solution of the compressible, resistive 
MHD equations in three space dimensions. These equations are cast in local cylin- 
drical coordinates, which can represent a circular cross-section torus or a periodic 
cylinder. We have approximated the radial terms by finite differences, and have used 
the pseudospectral algorithm for the periodic directions. We have shown that this 
technique, which has been extensively used in hydrodynamics, is well suited to the 
computation of nonlinear states of plasmas in magnetic fusion experiments when 
many mode interactions are involved. We have computed the turbulent states that 
result from the nonlinear interaction of unstable modes of different helicity. We have 
found that when fast transform techniques are used the pseudospectral algorithm is 
more efficient than finite differences in that results of comparable accuracy are 
obtained with less computer time. 
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